Time Limit: 1000 ms Memory Limit: 256 MB
Description
大家都知道,长城在自然条件下会被侵蚀,因此,我们需要修复。现在是21世纪,修复长城的事情当然就交给机器人来干辣。我们知道,长城每时每刻都在受到侵蚀,如果现在不修复,以后修复的代价会更高。现在,请你写一个程序来确定机器人修长城的顺序,使得修复长城的代价最小。
在这道题中,我们认为长城是一条很长的线段,长城的每个位置都有唯一的数字与它对应(即当前位置到长城某一端的距离)。这台机器人开始被放在一个给定的初始位置,并以一个恒定的速率行驶。对于每个损坏的地方,你都知道它具体的位置、现在修复的代价、以后修复代价会怎么增加。由于机器人效率特别高,机器人每到损坏的地方就能瞬间将该位置修复(神秘)。
Input
第一行三个整数 $n, v, x (1 \leq n \leq 1000, 1 \leq v \leq 100, 1 \leq x \leq 500000)$ ,分别表示长城损坏地方的数目、机器人在1个单位时间内移动的长度、机器人的初始位置。
接下来n行,每行三个整数 $x, c, u (1 \leq x \leq 500000, 0 \leq c \leq 50000, 1 \leq u \leq 50000)$ 。x代表损坏地方的位置。如果立即修复,则该损坏位置修复的代价为c。如果选择在t时刻后修复,则该损坏位置修复的代价为c+u*t。数据保证所有损坏的位置都是不同的,机器人刚开始不会站在损坏的位置上面。
Output
输出只有一个整数,修复整个长城的最小代价(如果是小数,则向下取整)。
对于下面第一组样例的解释:
首先去998位置修复,费用为600。
然后去1010位置修复,费用为1400。
最后去996位置修复,费用为84。
最终答案为2084。
Sample Input | Sample Output |
【样例输入1】 3 1 1000 1010 0 100 998 0 300 996 0 3 【样例输入2】 3 1 1000 1010 0 100 998 0 3 996 0 3 | 【样例输出1】 2084
【样例输出2】1138 |
题解:
鉴于这是一个神级机器人,经过的地方都能瞬间修好,那么被修好的地方都一定是连续的。在修的过程中,要么向左修一下,要么向右修一下,仅有两种决策。这时想到区间DP。
DP中只需要计算增长的损失即可,原损失必然加到总和之中。
设$f_{i,j}$表示已修好$[i,j]$,此时站在$i$上;设$g_{i,j}$表示已修好$[i,j]$,此时站在$j$上。
如果从$[i-1,j]$扩展到$[i,j]$,所用时间为$t$,相当于$[1,i]$的点和$[j+1,n]$的点都有$t$的损失。用前缀和维护$[1,i]$与$[j+1,n]$的总损失速度,乘上$t$加入代价中。
同理,从$[i,j-1]$扩展到$[i,j]$,所用时间为$t$,相当于$[1,i-1]$与$[j,n]$的点都有$t$的损失,同样用前缀和求出,计算这一步的代价。
方程如下:
前缀和数组$a_i=\sum\limits_{j=1}^i u_i$
则
$$\begin{aligned}f_{i,j}&=min(f_{i+1,j}+(x_{i+1}-x_i)*(a_i+a_n-a_j),g_{i+1,j}+(x_j-x_i)*(a_i+a_n-a_j))\\g_{i,j}&=min(f_{i,j-1}+(x_{j}-x_i)*(a_{i-1}+a_n-a_{j-1}),g_{i,j-1}+(x_j-x_{j-1})*(a_{i-1}+a_n-a_{j-1}))\\\end{aligned}$$
Tips:
1.为了处理方便,可以多设置一个毫发无损的修复点代表起点。
2.dp数组要开long long:为了精度问题,计算中先不除$v$,最后输出的时候简单处理一下再除$v$。
3.我的代码里面,$f$数组多开了一维表示是站在左边还是站在右边,而不是这里写的$f$和$g$。
总体还是比较简单的,当时没有想到可以用前缀和方便维护全局的损失,写得奇奇怪怪只有40,无语了。
1 #include2 #include 3 #include 4 #include 5 using namespace std; 6 typedef long long ll; 7 typedef double db; 8 const int N=1010; 9 int n,v,X,p;10 ll f[N][N][2],sum[N],ans;11 struct Node{12 ll x,c,u;13 friend bool operator < (Node x,Node y){14 return x.x n) break;36 t1=s[i+1].x-s[i].x; t2=s[j].x-s[i].x; out=sum[i]+(sum[n]-sum[j]);37 f[i][j][0]=min(f[i+1][j][0]+t1*out,f[i+1][j][1]+t2*out);38 t1=s[j].x-s[j-1].x; t2=s[j].x-s[i].x; out=sum[i-1]+(sum[n]-sum[j-1]);39 f[i][j][1]=min(f[i][j-1][0]+t2*out,f[i][j-1][1]+t1*out);40 }41 printf("%lld\n",(ans*v+(min(f[1][n][0],f[1][n][1])))/v);42 return 0;43 }